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Abstract 
Recent work in classification indicates that 
significant improvements in accuracy can be 
obtained by growing an ensemble of classi- 
fiers and having them vote for the most pop- 
ular class. This paper focuses on ensembles 
of decision trees that are created with a ran- 
domized procedure based on sampling. Ran- 
domization can be introduced by using ran- 
dom samples of the training data (as in bag- 
ging or arcing) and running a conventional 
tree-building algorithm, or by randomizing 
the induction algorithm itself. The objective 
of this paper is to describe our first experi- 
ences with a novel randomized tree induction 
method that uses a subset of samples at a 
node to determine the split. Our empirical 
results show that ensembles generated using 
this approach yield results that are compet- 
itive in accuracy and superior in computa- 
tional cost. 

1. Introduction 
Ensembles of classifiers, also referred to as forests 
in the case of decision tree classifiers, are increas- 
ingly gaining acceptance in the data mining com- 
munity. This is prompted by many factors, includ- 
ing a significant improvement in accuracy (Breiman, 
1996a; Freund & Schapire, 1996; Quinlan, 1996; Bauer 
& Kohavi, 1990), the potential for on-line classifica- 
tion of large databases that do not fit into memory 
(Breiman, 1996b), and the ease with with these tech- 
niques lend themselves to scalable parallelization (Hall 
et al., 2000). There are different ways in which en- 
sembles can be generated, and the resulting output 
combined to classify new instances. Implicit in some 
of these ensembles is the concept of randomness that 
is introduced either through the randomization of the 
training set, or the randomization of the classifier it- 
self. 

In this paper, we discuss one particular approach to 
randomization, namely the use of random sampling to 
determine the split made at each node of a decision 
tree. As the split made at a node is likely to vary with 
the sample selected, this technique can be used to gen- 
erate ensembles of trees. Our objective is to show that 
this approach not only improves the accuracy of the 
classifier like other approaches to ensembles, but does 
so at a relatively low cost. Our experimental studies 
with public domain datasets indicate that the accu- 
racy obtained is relatively insensitive to the percent- 
age of instances sampled at a node. This allows us to 
lower the cost of generating each tree in the ensemble, 
thus ameliorating the cost of generating the ensemble 
of trees. 

The paper is organized as follows: In Section 2, we 
discuss the various ways in which we can generate en- 
sembles of classifiers. Next, in Section 3 we describe 
the use of sampling to introduce randomization in the 
induction of decision trees. We describe our experi- 
mental results in Section 4 and conclude in Section 5 
with a summary and ideas for future work. 

2. Creating Ensembles of Classifiers 

There is considerable diversity in the way in which 
ensembles of classifiers can be created (Dietterich, 
2000a). In this section, we briefly discuss some of the 
more popular approaches. 

2.1 Changing the Instances Used for Training 

In this approach, each classifier in the ensemble is gen- 
erated using a different sample of the training set. 
There are several ways in which this can be accom- 
plished: 

0 Bagging: In this approach, a new sample of the 
training set is obtained through bootstrapping 
with each instance weighted equally (Breiman, 
1996a). This technique works very well for un- 
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stable algorithms such as decision trees and neu- 
ral networks, where the classifier is sensitive to 
changes in the training set and significantly dif- 
ferent classifiers are created for different training 
sets. In bagging, the results of the ensemble are 
obtained by using a simple voting scheme. Each 
classifier can be generated independent of the 
other, and randomization is introduced through 
the random sampling used to create each sample 
of the training set. 

2.3 Introducing randomness in the classifier 

Unlike the previous techniques, where the input to the 
classifier is changed to generate the ensemble, it is pos- 
sible to create the ensemble by changing the classi- 
fier itself. For example, in neural networks, the initial 
weights are set randomly, thus creating a new network 
each time. In decision trees, instead of selecting the 
best split at a node, one can randomly select among 
the best few splits to create the ensemble (Dietterich, 
2000b). Our approach to randomizing the classifier is 
to use only a sample of the instances at a node of a 
decision tree in order to make the decision. We explore 

Boosting: In this case, a new sample of the train- 
ing set is obtained using a distribution based 
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on- previous results (Freuid & Schapire, 1996). 
Unlike the Bagging algorithm, which uniformly 
weights all the instances in the training set, Boost- 
ing algorithms adjust the weights after each clas- 
sifier is created to increase the weights of misclas- 
sified instances. This essentially implies that the 
training sets for the classifiers have to be created 
in sequence, instead of in parallel, as in the case of 
Bagging. The different weights for the ensembles 
can either be directly incorporated into the clas- 
sifier by working with weighted instances, or be 
applied indirectly by selecting the instances with 
a probability proportional to their weights. Fur- 
ther, in boosting, the results of the ensemble are 
obtained by weighting each classfier by the accu- 
racy on the training set used to build it. As a 
result, better classifiers have a greater contribu- 
tion to the end result than the poorer classifiers. 
There are several variants of Boosting which differ 
in the way the instances are weighted, the condi- 
tions under which the algorithm stops, and the 
way in which the results from the ensemble are 
combined (Breiman, 1998; Bauer & Kohavi, 1990; 
Freund & Schapire, 1996). 

Pasting: In this approach, the ensemble of trees 
is grown using a sub-sample of the entire training 
set (Breiman, 1996b). This technique has been 
shown to be useful when the entire training set is 
too large to fit into main memory. 

Changing the features used in training 

In this approach, each new classifier is created using a 
subset of the original features. For example, Ho (1995) 
has illustrated the use of this technique with decision 
trees and Cherkauer (1996) has used it with neural 
networks. This approach tends to work only when the 
features are redundant, as poor classifiers could result 
if some important feature is left out. The approach 
used to select the features could introduce randomiza- 
tion to the procedure. 

this approach further in the next section. 

3. Sampling in Tree Induction 
The idea behind our approach is very simple: at each 
node of the decision tree, instead of using all instances 
to determine the best split, we use only a random sam- 
ple of the instances. This randomized procedure re- 
sults in different trees which can be combined in en- 
sembles. However, an efficient implementation of the 
approach can be non-trivial. 

In a decision tree, the split at each node is obtained by 
first sorting each of the continuous features and then 
selecting a split point that optimizes a certain crite- 
rion (Breiman et al., 1984). The more efficient imple- 
mentations of decision trees sort all the features once 
at the beginning. Each feature is associated with its 
instance identification to keep track of which feature 
in the sorted list is associated with which instance. 
Then, at each node, using an appropriate split crite- 
rion, the optimal split point is found for each feature. 
The best split across all features is chosen as the split 
point at the node. When the instances at a node are 
split among the children nodes, we want to maintain 
the sorted order of each feature for the purpose of ef- 
ficiency. In this scenario, if we want to split the in- 
stances at a node using a split based on only a sample 
of the total instances, we have two options: 

0 Sample with sorting: In this case, we randomly 
select p percentage of the n instances for a fea- 
ture. The sampling can be done with or without 
replacement. But, it results in the sampled set 
of feature values being unsorted. Therefore, af- 
ter the sampling at a node on each feature, an 
additional sort is needed. 

0 Sample without sorting: In order to main- 
tain the sorted order of the sampled features at a 
node, one option would be to divide the instances 
into n *p/lOO parts, each part containing lOO/p 



Table 1. Benchmark data sets used for studying the effect of sampling on the generation of ensembles. 
~~ 

DATA SET # TRAINING # TEST # CLASSES # DISCRETE # CONT 

INSTANCES INSTANCES ATTRIBUTES ATTRIBUTES 

GLASS 214 7 9 
BREAST CANCER 699 2 9 
PIMA INDIAN DIABETES 768 2 8 
GERMAN 1000 2 13 7 
SATELLITE IMAGE 4435 2000 6 36 
LETTER RECOGNITION 16000 4000 26 16 

instances, and randomly select an instance from 
each part. The sampled set would then remain 
ordered and no sorting is required. 

Table 2. Test error on the benchmark datasets for the gen- 
eration of a single tree. 

Once we have decided how to sample the instances, 
we can either use the same sampled set of instances 
for all the features, or obtain a new sample for each 
feature. In our work, we have chosen the latter ap- 
proach. Regardless of how the samples are obtained 
at each node, the process of sampling introduces ran- 
domization in the induction of the decision tree. This 
can be used to generate an ensemble of trees and, by 
appropriately combining the results of these trees, we 
can obtain classifiers with better generalization accu- 
racy. 

4. Experimental Results 
In this section, we describe the results of our experi- 
ments with the generation of ensembles using the sam- 
pling approach. We conducted our experiments on 
some of the larger datasets available from the repos- 
itory at the University of California at Irvine (UCI 
Dataset, 2001). The details of the data sets used are 
summarized in Table 1. None of the datasets consid- 
ered have any missing attributes. Note that except 
for the Glass dataset, the remainder of the data sets 
are relatively large. This choice was intentional as we 
believe that the use of sampling is most beneficial for 
large datasets. 

In some cases, the datasets were available with a test 
set. In such cases, we performed our experiments 10 
times to account for the randomization and averaged 
the results. In cases where there was no test set avail- 
able, we used 10-fold cross-validation, and averaged 
the results over 10 runs. Based on the observation 
by Breiman (1996a) that most of the improvement in 
bagging is evident within ten replications, we used 10 
trees to create the ensemble. This would give us the 
performance improvement bought by a single order of 
magnitude increase in the number of trees. The results 

DATA SET ERROR (%) 

GLASS 32.81 
BREAST CANCER 5.17 
PIMA INDIAN DIABETES 27.88 
GERMAN CREDIT 29.95 
SATELLITE IMAGE 15.75 
LETTER RECOGNITION 30.62 

of the ensemble were combined by a simple unweighted 
voting. 

We did not use pruning in the generation of the trees as 
we expected the use of ensembles to eliminate the over- 
fitting. We also used the same sampling percentage at 
each node of the tree, though it is possible to vary this 
value at each node. In addition, we stopped the sam- 
pling when the number of samples was less than twice 
the number of features at a node. The sub-tree at this 
node was then generated without using any sampling. 
This was done to ensure that there were enough sam- 
ples at a node relative to the size of the hypothesis 
space, so that we could obtain an accurate classifier. 

The decision trees in our experiments were generated 
using the Gini index as the split criterion (Breiman 
et al., 1984). The test error averaged over multiple 
runs for the case of a single tree is indicated in Table 2. 
This gives us the baseline results for comparison with 
the results obtained using the ensembles. 

4.1 Effects of Sorting in Sampling 

For our initial experiments, we first selected the sec- 
ond option in Section 3 where the sampling was done 
without any need for sorting. We believed that the 
compute time required would be less as there was no 
sorting on each sample for each feature at each node. 
In Table 3, we present the results of the accuracy of 
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Table 3. Test error on three datasets illustrating the effects of sampling with and without sorting 

PERCENTAGE SAMPLED GLASS P I M A  INDIAN D I A B E T E S  GERMAN C R E D I T  

ERROR ERROR ERROR ERROR ERROR ERROR 
W/O SORTING W/ SORTING W/O SORTING W/ SORTING W/O SORTING W/ SORTING 

0.9 34.38 27.33 
0.8 34.71 26.62 
0.7 37.67 27.47 
0.6 34.43 26.48 
0.5 28.57 27.48 
0.4 31.14 28.00 
0.3 29.52 27.33 
0.2 27.24 27.33 
0.1 28.95 30.14 

0.05 32.81 32.81 
0.01 32.81 32.81 

26.96 
26.59 
27.26 
28.09 
24.67 
24.50 
24.47 
24.59 
24.67 
25.11 
27.88 

24.35 
24.63 
25.02 
24.72 
24.93 
24.59 
24.65 
24.90 
25.04 
25.04 
27.88 

30.01 
30.27 
30.35 
30.18 
28.56 
28.80 
28.70 
28.09 
26.77 
27.14 
29.95 

28.55 
28.59 
28.30 
28.48 
28.68 
28.43 
27.87 
27.51 
27.17 
26.62 
29.95 

the ensembles as we varied the percentage of instances 
sampled at each node of the trees. We present our re- 
sults for three of the smaller datasets: Glass, Pima In- 
dian diabetes, and German Credit. The error is given 
for both the case where we sample without sorting and 
with sorting. 

We observe from the table that for a large sample size, 
the error with sorting was less than the error with- 
out sorting. This observation held across the three 
datasets and the different percentages of the instances 
sampled at a node. When we investigated this further, 
we found that, in the case without sorting, the way the 
instances were divided into parts had an effect on the 
results. Recall that to obtain a sample at p percentage, 
we divide the instances n at a node into n*p/100 parts, 
each part containing 1OO/p instances. However, when 
p > 50%, this means that the number of instances in 
each part is 1, with the possible exception of the last 
part, which includes all remaining instances. For ex- 
ample, suppose we have n = 800 instances at a node, 
and we want a p = 80% sample. This will imply that 
of the 640 instances to be selected from the 640 parts, 
the first 639 instances will come from parts that are 
only a single instance wide. The last sampled instance 
will be from a part that is (800 - 640) = 160 wide, 
thus resulting in a biased sample and inferior results. 

Based on this observation, for the remainder of our 
experiments, we chose to do the explicit sorting for 
sampling percentages higher than 50% and opted for 
the non-sorting version of sampling for lower values 
of percentage of instances sampled. This enabled us 
to use the more efficient implementation without any 
detrimental effect in the generalization error. 

4.2 Accuracy for Sampled Ensembles 

An important observation from Table 3 is that the ac- 
curacy of the results appears to be somewhat indepen- 
dent of the percentage of instances sampled at a node. 
In Table 4 we present the results for the remainder of 
the datasets: Breast Cancer, Satellite Image, and Let- 
ter Recognition. We notice again that the accuracy is 
roughly constant as we vary the percentage sampled, 
with the exception of the results for a sampling per- 
centage of 40%, where the results are less accurate. 

In order to explain this behavior, we took a second look 
at how we split the instances at a node of the tree. For 
each feature, we need to identify a value such that a 
split point on that feature at that value will optimize 
the split criterion. By sampling the instances at a node 
without sorting, we are essentially selecting a sample 
that is close to uniformly distributed across the in- 
stances. This ensures a split point that is close to the 
optimal split point. In the case of sampling without 
sorting, in the worst case, the split point selected could 
be as far from the true split point as the width of the 
part from which it is selected. When we introduce ran- 
domness through sampling, it is likely that the trees 
created in the ensemble are very different. However, 
the decision boundaries, that is the hyperplanes sepa- 
rating the classes, for all the trees will be very close to 
each other. In contrast with a single tree, the decision 
boundary for the ensemble will be “soft”, leading to a 
better generalization error. 

Note that as we reduce the percentage of instances 
sampled, the error increases again, some times revert- 
ing to the value in Table 2. This is because at some 
point, the sample size at the base node of the tree be- 
comes small enough such that the number of samples 



Table 4. Test error on three datasets illustrating the effects of sampling in the creation of ensembles 

PERCENTAGE SAMPLED BREAST CANCER SATELLITE IMAGE LETTER RECOGNITION 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.05 
0.01 

3.56 
3.63 
3.37 
3.26 
4.03 
4.72 
4.04 
3.76 
3.67 
3.56 
5.17 

11.64 
11.55 
11.67 
11.56 
12.36 
13.37 
12.06 
11.84 
11.65 
11.83 
15.75 

11.62 
11.73 
11.58 
11.97 
13.05 
35.76 
19.84 
12.71 
13.25 
12.50 
13.79 

is at least twice the number of features. As explained 
earlier, at this point, each tree in the ensemble be- 
comes identical to the tree created without sampling, 
and the error is the same as that for a single tree. For 
sample percentages just a little higher than this value, 
the nodes at  the higher levels of the tree use sampling, 
but those at the lower levels take the “no-sampling” 
path, resulting in a higher error value for the ensem- 
bles, but lower than the error for a single tree. This 
observation could be used as a rough rule of thumb to 
determine the smallest percentage of the samples to 
use in creating the ensembles. 

In terms of the accuracy obtained by the our ensembles 
relative to other similar approaches, our results are 
competitive with those obtained through Boosting and 
Bagging (Freund & Schapire, 1996; Quinlan, 1996). 

4.3 Computat ional  Costs 

We would expect that the use of sampling in the tree 
induction would reduce the total time required in com- 
parison with tree induction without sampling. This 
is because fewer instances have to be considered in 
determining the split value at each node of the tree. 
Further, the process of sampling without sorting adds 
little to the overhead due to the sampling itself. Our 
initial timing results are presented in Table 5. The 
times given are in seconds on a 800MHz Pentium I11 
system with 512MB of memory. Since we generate 10 
trees in the ensemble, we considered a sampling rate 
of 0.1. The comparison is between the average of 10 
runs of the single tree generated without sampling vs. 
10 runs of the ensemble. We compare the total time 
for training and testing, though our timing results in- 
dicate that a large part of this is training time. 

?Ve note that the ensembles are slower by a factor of 5 
and 8 for the letter recognition and satellite datasets, 

Table 5. Timing results (in seconds) comparing 10 runs of 
the training/testing of a single tree without sampling vs. 
an ensemble of 10 trees with sampling at 10%. 

SATELLITE LETTER 
IMAGE RECOGNITION 

SINGLE TREE 61 S 262 s 
ENSEMBLE 488 s 1279 s 

respectively. If we had not used any sampling, the 
time for the ensembles of 10 trees would have been a 
factor of 10 greater. Our timing results show that a 
substantial amount of time in the generation of the 
decision tree is in the initial sorting of the features. 
Since the same training set is used for all the trees in 
the ensemble, we expect that the time for the ensem- 
bles can be reduced further by doing the sort only once 
for all the trees. This approach to reducing the cost of 
ensembles is not applicable in the case of bagging or 
boosting, the training set varies across the classifiers 
in the ensemble and the sorting has to be done in each 
case. 

5. Summary and Future Work 
In this paper, we have introduced an approach to the 
generation of ensembles where randomization is intro- 
duced in the decision tree induction through the use of 
sampling. Our early experimental results using pub- 
lic domain datasets show that this is a promising a p  
proach, both in terms of accuracy and computational 
cost. However, much remains to be done. We want to 
improve the performance of the ensembles by sorting 
the features of the training set only once for each tree 
in the ensemble. h r the r ,  we are interested in seeing if 
the results would be improved by using more trees in 
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the ensemble. In addition, we plan to conduct studies 
with additional datasets to see if the results carry over 
to these datasets as well. 
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